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ABSTRACT

The Lion Optimization algorithm (LOA) and discrete Hopfield neural
network (DHNN) are broadly employed for solving various complex opti-
mization problems. Specifically, the Lion Optimization algorithm (LOA)
is a new iterative and robust nature-inspired swarm metaheuristic algo-
rithm, commonly utilised as a dynamic approach to improve the learning
phase and convergence of the neural network. In this paper, a Hybrid
Modified Lion Optimisation algorithm (LOA) with discrete Hopfield neu-
ral network (DHNN) is proposed for Boolean Satisfiability programming
with different complexities. The powerful operators in LOA can be lever-
aged to reduce the computational burden in DHNN. The findings mani-
fest the performance of the hybrid DHNN model in terms of sensitivity,
accuracy, convergence rate, robustness, and computational time.

Keywords: Lion Optimization algorithm, discrete Hopfield neural net-
work, Boolean Satisfiability.
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1. Introduction

The Lion Optimization algorithm (LOA) is a class of robust metaheuristic
paradigm, inaugurated by Rajakumar (2012) by taking inspiration from the
social behavior of lions. Lions’ intriguing and fascinating social behaviors are
the main reason for exposing it as the strongest mammal in the jungle (king of
the jungle). This variant of the metaheuristic algorithm can be applied on any
artificial neural network model according to Mohandes et al. (2019). Math-
ematically speaking, the Lion optimization algorithm has been modeled and
crafted by Rajakumar (2012) and Ramakrishnan and Sankaragomathi (2017).
The Lion’s optimization algorithm hunts solutions according to survival de-
fense and territorial takeover. According to Wang et al. (2012), the stronger
pride lion will dominate compared to the territorial lion that will end up with
death or migration. Hence, the stronger pride lion refers to the global minima
solution whereas the territorial lion denotes as local minima solution. Accord-
ing to Yazdani and Jolai (2016), a group of lionesses will mutually hunt and
surround the prey from different points by utilizing rapid attack. Therefore,
the regulated group hunting among the lions contributes towards a massive
probability of success in lion hunts and survival as reported by Ramakrishnan
and Sankaragomathi (2017). The study by Rajakumar (2012) divides LOA
into four powerful stages such as pride generation, mating via crossover plus
mutation operator, territorial defense, and territorial takeover. After meeting
the termination criteria, we will select the lion or lionesses (the best solution).
The iterative process enables the algorithm in searching to converge until the
global minima are reached as reported by Sirdeshpande and Udupi (2017).

Chander et al. (2018) and Lin et al. (2018) had also conducted a significant
study on LOA. These works are focusing on the fundamental developments in
term of mathematical equations and steps involved in Lion optimization algo-
rithm. Hence, the flexibility of the Lion optimization algorithm is the main
motivation of incorporating this algorithm with discrete Hopfield neural net-
work. The higher order k-Satisfiability problem (k-SAT) is the backbond for a
numerous challenging problem because SAT bridges the Boolean logical trans-
formation from problems to reasoning and semantic. The most popular variant
is 3-Satisfiability (3-SAT) logic where the higher order Boolean satisfiability
can be converted or simplified into this form Mansor and Sathasivam (2016).
The implementation of 3-SAT has been done by Aiman and Asrar (2015) by
using genetic algorithm as the searching method. Pursuing that, Kasihmuddin
et al. (2016) have applied the k-Satisfiability programming in discrete Hopfield
neural network (DHNN). Additionally, Shazli and Tahoori (2010) has applied
the higher order Boolean satisfiability problem in circuit design and verifica-
tion. There are different class and variant of neural networks including the
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discrete Hopfield neural network as developed by Hopfield and Tank (1985).

The discrete Hopfield neural network is a bipolar recurrent network with
efficient associative memory and its function as powerful storage with definite
memories in a way of the biological brain process an information as demon-
strated in Sathasivam (2010). Due to the effectiveness of Lyapunov energy
optimization in DHNN by Rojas (2013), a prolific number of researchers have
amalgamated the concept of Boolean satisfiability programming with discrete
DHNN as reported in Mansor et al. (2017). The work by Velavan et al. (2016)
manifests the flexibility of DHNN to work in tandem with the accelerating al-
gorithm, for instance, Mean Field theory. Then, the work by Mansor et al.
(2017) has demonstrated the effectiveness of the hybrid artificial immune sys-
tem with discrete Hopfield neural network for 3-SAT problem. Pursuing that,
Kasihmuddin et al. (2017) have proposed the genetic algorithm with discrete
Hopfield neural network for k-Satisfiability logic programming.

A new hybrid Boolean higher order 3-SAT logic programming model has
been developed by using the concept of robust nature-inspired algorithm called
Lion Optimization algorithm and the recurrent neural network called discrete
Hopfield neural network. The effectiveness of the proposed model will be au-
thenticated by comparing with the metaheuristic algorithms such as genetic
algorithm, exhaustive search and imperialist competitive algorithm.

2. Boolean 3-Satisfiability Logic

The Boolean Satisfiability (SAT) is the problem of determining the inter-
pretation of assignment with a given Boolean formula that either evaluates to
true or false. Thus, for any higher order Boolean logic problem with the con-
dition where is the number of variable, the problem can be reduced to 3-SAT
Shazli and Tahoori (2010). In this paper, the systematic form of SAT will
be formulated. The properties of SAT that ensembles Boolean 3-SAT are as
follows:

Property 1
The Boolean SAT formula comprises of n variables, z1, z2, ...., zn, z ∈ {−1, 1}
entrenched per clause. Since n = 3, the Boolean SAT will consist of 3 clause.

Property 2 A set of k clauses connected by AND (∧) in a 3-SAT formula as
follows: ∃k : F = C1 ∧ C2 ∧ .... ∧ Ck.
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Property 3
A set of lk,i literals and each clause ck, ∀ 1 ≤ k ≤ m, ck = (l(k,1)∨ l(k,2)∨ l(k,3))
which consists of several literals connected by the classical operator OR (∨).

Property 4
Then, the state of the literals can be the negation of the variables or the posi-
tive variables. ∀ 1 ≤ k ≤ m, 1 ≤ k ≤ 3 : l(k,i) = zp or l(k,i) = ¬zp for 1 ≤ p ≤ n.

The Boolean 3-SAT formula is usually specified in product of sums or con-
junctive normal form or CNF. Typical example of 3-SAT formula is given:

P3−SAT = (A ∨ ¬B ∨ C) ∧ (¬E ∨ F ∨ ¬G) ∧ (H ∨ Y ∨ Z), (1)

Equation (1) shows an example of Boolean 3-SAT logic, P3−SAT with 3 literals
and 3 clauses. The task of finding the satisfied bipolar combination for this
logic is usually tedious. Henceforth, a powerful searching algorithm is needed
to generate the truth combination that satisfy the Boolean 3-SAT formula.

3. Discrete Hopfield Neural Network

Discrete Hopfield neural network (DHNN) is a class of recurrent neural
network with the complex interconnected connections. As the nature of DHNN
is non-symbolic, the declarative semantic power in 3-SAT will make it more
powerful with the remarkable memory. Therefore, the early work of Hopfield
and Tank (1985) established the computational power of DHNN in solving
the hard optimization problem, specifically the travelling salesman problem.
The auto-associative model such as DHNN systematically store patterns as a
content addressable memory (CAM). The excitation of the neuron in DHNN
can be represented mathematically as in Si :

Si =

{
1 if

∑
j WijSj > ξ

−1 Otherwise
, (2)

where Wij is the weight for unit j to i and ξ refers to the threshold. The
implementation of 3-SAT in DHNN is denoted as DHNN-3SAT. DHNN-3SAT
considers 3 neurons per clause. The local field is utilized to appropriately
squash the retrieved output before generating the final state. Moreover, the
local field formulation for k = 3 is shown in Equation (3) as formulated by
Mansor et al. (2017).

hi =

N∑
k=1,i6=j 6=k

W
(3)
ijkSjSk +

N∑
j=1,i6=j 6=k

W
(2)
ij Sj +W

(1)
i , k = 3, (3)
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where i and j are corresponded to neuronsN . These local field will establish the
usefulness and adaptability of the final states attained by DHNN. Consequently,
the generated final interpretation will classify whether the solution is overfit or
not. Specifically, the updating rule of the states is:

Si(t+ 1) = sgn[hi(t)], (4)

The neuron relation is absolutely symmetric and zero diagonal for the cases;
W

(2)
ii = W

(2)
jj = W

(2)
kk = W

(3)
iii = W

(3)
jjj = W

(3)
kkk = 0, which further derive and

formulate the final energy of respective variant of DHNN-3SAT as given:

Emin = − 1
3

∑N
i=1,i6=j 6=k

∑N
j=1,i6=j 6=k

∑N
k=1,i6=j 6=kW

(3)
ijkSiSjSk

− 1
2

∑N
i=1,i6=j

∑N
j=1,i6=j W

(2)
ij SiSj −

∑N
i=1W

(1)
i Si , k = 3,

(5)

Equation (4) and equation (5) are significant to guarantee the convergence
of the neurons to local or global minimum. In this paper, the value of synaptic
weight will be determined by using Wan Abdullah method as coined by Ab-
dullah (1992). Thus, it is a comprehensive learning method by computing the
respective synaptic weight according to Boolean logical inconsistencies.

4. Modified Lion Optimization Algorithm

The Lion Optimization Algorithm (LOA) is a variant of bio-inspired and
population-based searching method by taking socio-behavioral of lion species
as reported by Rajakumar (2012). This algorithm focuses on the mathematical
modelling of lions’ survival, mating, and social organization in order to tackle
constraint satisfaction problem. The interpretation of socio-behavioural of lion
in a population will be modelled in algorithmic form to search for the global
or feasible solution from a massive search space. According to Yazdani and
Jolai (2016), every possible solution is represented as an individual of Lion
living in a particular jungle. Thus, the lion is the bipolar interpretation to be
computed by the hybrid model. Mathematically, the solutions are represented
in bipolar string in order to comply with Boolean 3-SAT logic programming.
The implementation of LOA is simplified as follows:
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Step 1: Initialization of Pride Generation
100 Lions, Lij are initialized. The lion represents the bipolar string of solutions
of 3-SAT logic.

Lij =

{
1 rand(0, 1) ≥ 0.5

−1 Otherwise
1 ≤ i ≤ N, 1 ≤ j ≤ 100, (6)

Step 2: Fitness Evaluation
The fitness value of the lion will be calculated. The fitness equation is modified
to comply with our work. Thus, the fitness measures the total number of
satisfied clauses per 3-SAT logical formula.

fitnessi =

NC∑
i=1,j=1

Cij , (7)

Step 3: Hunting
The lion will be divided randomly into prey lion and hunter lion. The lion with
higher fitness has higher chance to be the hunter lion, see Yazdani and Jolai
(2016).

Prey′ = Prey + rand(0, 1)× PI × (Prey −Hunter), (8)

where Prey is the prey lion, PI is the percentage of enhancement in the fitness
of hunter and Hunter denotes the hunter lion.

Step 4: Moving Towards Safe Place
Since the enclave of each prides consist of the best individual positions of each
member, the LOA will assist to save the finest solutions obtained per iteration.

Step 5: Roaming
During this stage, the probability of the solution enhancement will be evaluated
before being elected to Step 6.

pri = 0.1 +min(0.5,
(Nomadi −BestNomad)

BestNomad
) i = 1, 2, ..., (9)

where priis the probability of the roaming, Nomadi is the current position and
BestNomad denotes the fitness of the best nomad lion (solutions).

Step 6: Mating
Mating is a procedure of generating the best solution via crossover, mutation
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and gender grouping process. The offspring will become the nomadic lion.

Loffspring = β × Lfemale +
∑ (1− β)∑NR

i=1 Si

× Lmales × Si, (10)

where Si is set to be 1 , NR is number of nomadic male lions, Loffspring is
the number of the offspring produced and β is randomly generated parameter
(0, 1).

Step 7: Territorial Defense
The territorial defense is a procedure assessing the current solution (territorial
lion) and newly formed solutions (nomadic lion). Hence, the newly generated
solution will be promoted to be the current solution if the fitness is higher than
the existing solution.

Step 8: Territorial Takeover
In the most of nature inspired algorithm, this operator is equivalent to the
selection. Therefore, the best lion or lioness will be selected by looking at
Equation (11), otherwise go to Step 3.

fitnessi = max{NC}, (11)

5. Implementation and Experimental Setup

The hybrid DHNN models that have been explored in this paper are DHNN-
3SAT models such as DHNN with the modified Lion Optimization algorithm
(DHNN-3SATLOA), DHNN incorporated with genetic algorithm (DHNN-3-
SATGA) by Kasihmuddin et al. (2017), DHNN with exhaustive search (DHNN-
3SATES) by Zhang et al. (2017) and DHNN integrated with Imperialist Com-
petitive algorithm (DHNN-3SATICA) by Shazli and Tahoori (2010), Abdullah
(1992). In this work, the DHNN models utilized the simulated datasets by
generating random 3SAT clauses with different level of complexities. The im-
plementation of the developed model, DHNN-3SATLOA and the other models
is carried out via Microsoft Visual Basic C++ 2013 for Windows 10.1 and 16
GB of RAM. Similar processing system and CPU will be used in every execution
to avoid possible bad sector and bias during computation. The experiments
are limited until NN = 108 for simplicity.
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Table 1: List of Important Parameters in DHNN-3SAT Models.

Parameter Value
Tolerence Value (Tol) 0.001

Combination of Neurons 100
Number of Strings 100

Number of Neurons 9 ≤ NN ≤ 108

Relaxation Rate 5

The experimental setup and important parameters are given in Table 1.
Hence, the tolerance value as in Table 1 is selected due to a good agreement
with the work of Sathasivam (2010) and Kasihmuddin et al. (2018). The im-
plementation is shown in Figure 1.

Find the inconsistency of the 3-SAT logic

Derive the cost function for 3-SAT logic programming, 𝐸3−𝑆𝐴𝑇

Check the 3-SAT clause satisfaction via:

Genetic 

Algorithm (GA)

Imperialist Competitive 

Algorithm (ICA)

Compute the synaptic weight by comparing the cost function 

and optimized global minimum energy function 

Store the synaptic weight as CAM

Translate 3-SAT into Boolean Algebra Form

Lion Optimization 

Algorithm (LOA)

Compute the optimized global minimum energy

Apply energy relaxation method

Compute the corresponding local field, ℎ𝑖

Hyperbolic Tangent Activation Function

Compute the final energy

Local Minima Global Minima 

YESNO

𝐸𝑚𝑖𝑛 − 𝐸 ≤ 𝑇𝑜𝑙

Compute the RMSE, MAE, SSE, SMAPE, Global Convergence Ratio and CPU time

END

START

Exhaustive Search 

(ES)

𝐸3−𝑆𝐴𝑇 = 0

Figure 1: The Implementation of DHNN-3SAT Models in the Task of 3-SAT Programming
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6. Results and Discussion

The performance and sturdiness of our proposed hybrid model, DHNN-
3SATLOA with the other 3 models, DHNN-3SATES, DHNN-3SATGA and
DHNN-3SATICA were evaluated by utilizing various performance evaluation
metrics. The comparisons are discussed according to the analyses of Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), Global Convergence
Ratio, Sum of Squared Error (SSE), Symmetric Mean Absolute Percentage
Error (SMAPE), and CPU Time.

Figure 2 to Figure 7 manifest the capability of the hybrid Lion Optimiza-
tion algorithm with discrete Hopfield neural network (DHNN-3SATLOA) as
compared with DHNN-3SATES, DHNN-3SATGA, and HNN-3SATICA in gen-
erating global solutions for 3-Satisfiability logic programming. The simulations
were conducted by manipulating the different Number of Neurons (NN), rang-
ing from NN = 9 until NN = 108.

The root mean square error (RMSE) and mean absolute error (MAE)
recorded by the developed model, DHNN-3SATLOA are presented in Figure 2
and Figure 3. Figure 2 and Figure 3 demonstrate the accuracy of our proposed
model in training the simulated data of 3-SAT logic without consuming the
unnecessary tedious iterations in generating global solutions. This is due to
the migration operator where the crossover happens and the territorial defense
that improve the solutions to achieve global convergence. Therefore, fewer iter-
ations will allow the model to attain faster convergence, resulting in minimum
RSME and MAE obtained by DHNN-3SATLOA. Apparently, DHNN-3SATES
performed apparently poorly due to the trial and enumerate procedure in at-
taining the truth combinations. Moreover, DHNN-3SATGA is still acceptable
for the lower number of neurons as the non-fit strings need to be improved
before undergoing the mutation operator Aiman and Asrar (2015). The capa-
bility of DHNN-3SATICA is slightly better than the two counterparts, as the
RMSE and MAE approaching the one generated by our developed model. This
is due to the optimization operator such as colonization and the imperialism
operator in producing the best solutions Lian et al. (2012).

Figure 4 elucidates in achieving the global convergence of the DHNN-3SAT
models provided the complexity of the network ranging from NN = 9 until
NN = 90. Therefore, it is very obvious that DHNN-3SATLOA outperformed
the other 3 hybrid models in achieving the global convergence during the task
of logic programming. The developed model was able to generate more global
solutions according to the ratio of global convergence obtained at the end of
the simulations. From Figure 4, it is obvious that DHNN-3SATES attain less
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global convergence ratio due to the trial and error procedures in obtaining the
solutions. As a result, more local solutions are being generated by the models,
indicating the weakness of ES in training the 3-SAT logic.

The sensitivity of the hybrid models towards the accumulation of error can
be explained in Figure 5. Figure 5 portrays the sum of squared error (SSE)
recorded by the models in the task of logic programming for a different level
of complexities. DHNN-3SATLOA exhibits the lowest value of SSE, indicat-
ing that the model is less prone towards any incoming error. Henceforth, the
sensitivity of DHNN-3SATLOA is the lowest as compared to DHNN-3SATGA,
DHNN-3SATES, and DHNN-3SATICA. This is due to the mating, territorial
defense and territorial takeover operators that allowed the solutions to be im-
proved vigorously without taking more iterations. Thus, the fitness of the
solutions is enhanced effectively in less iterations.

According to Figure 6, it was observed that the SMAPE for DHNN-3SAT
models possesses a similar trend. When the numbers of neurons are higher,
the SMAPE for the four hybrid models is getting massive. However, DHNN-
3SATLOA generates lesser SMAPE due to the capability of the models to attain
the global convergence in fewer iterations. The optimization operator in LOA
especially during territorial defense has enhanced the non-fit solution to become
global solutions without consuming trial and error stage. Thus, it was clear
that the percentage of SMAPE depicts the minimum values as compared to the
other models. The searching operator in DHNN-3SATGA, DHNN-3SATES,
and DHNN-3SATICA is also promising at NN=9 as it completes the task of
3-SAT programming effectively with SMAPE less than 5% respectively.

In addition, the robustness of the proposed algorithm with the conventional
methods based on the CPU time taken to complete the execution. The CPU
Time recorded by DHNN-3SATLOA, DHNN-3SATES, DHNN-3SATGA, and
DHNN-3SATICA per simulation is elucidated in Figure 7. Overall, based on
the CPU Time evaluation, the developed hybrid model, DHNN-3SATLOA ex-
ecuted the 3-SAT programming faster than the other three models. In theory,
the powers of territorial defence and territorial takeover operators had enabled
the non-fit solution (lion) to be further improved to achieve global convergence
without undergoing additional iterations. The DHNN-3SATES exhibited the
longest time to attain global solutions as the searching process was based on
enumerate and generate procedures within a particular search space. Hence-
forth, the iterations had contributed significantly to the entire execution time
for DHNN-3SATES model. On the contrary, DHNN-3SATGA model required
early population adjustment before undergoing crossover and mutation oper-
ator to improve the fitness of the solutions Kasihmuddin et al. (2016). Addi-
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tionally, DHNN-3SATICA is moderately reliable, even though the colonization
operator in enhancing the solution might consume additional time. To sum
up, DHNN-3SATLOA was apparently more robust as compared to the other
three models in the task of logic programming. According to the performance
metrics analysis, it can be observed that our developed model has improved
the work of Aiman and Asrar (2015) and Kasihmuddin et al. (2018) in terms
of hybrid model development in solving 3-SAT problems.
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Figure 4: The Global Convergence Ratio for DHNN-3SAT models
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Figure 5: The SSE for DHNN-3SAT models

Figure 6: The SMAPE for DHNN-3SAT models
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Figure 7: The CPU Time for DHNN-3SAT models

7. Concluding Remarks

The researchers have presented the effectiveness of the hybrid Lion Opti-
mization algorithm with discrete Hopfield neural network (DHNN-3SATLOA)
in executing 3-Satisfiability programming as compared to state-of-the-art mod-
els such as DHNN-3SATGA, DHNN-3SATES and DHNN-3SATICA. In order
to evaluate the performance and capability of the developed model, the re-
searchers of this study have trained and tested it by using simulated data sets,
which showed that DHNN-3SATLOA outperformed the other models in terms
of RMSE, MAE, SSE, Global Convergence Ratio, SMAPE and CPU Time.
Despite all that, this research is still in its infancy stage, and the development
of the developed hybrid model can be utilized further with Boolean-based data
mining. In addition, the developed model has a profound potential in solving
various constraint satisfaction and optimization problems ranging from schedul-
ing to the shortest path problems.
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